

Instabilidade Lateral de Vigas Pré-moldadas em Concreto Protendido Eduardo Thomaz¹, Luiz Carneiro², Mayra Perlingeiro²

¹Instituto Militar de Engenharia / Seção de Eng^a de Fortificação e Construção / ecsthomaz@terra.com.br ²Universidade Federal Fluminense / Departamento de Eng^a Civil / luizcarneiro@id.uff.br, mayraperlingeiro@id.uff.br

Resumo

Este trabalho apresenta critérios sobre a instabilidade lateral de vigas pré-moldadas em concreto protendido, cujo fenômeno pode ocorrer na etapa de manuseio e transporte destas. São tecidos comentários sobre o cálculo da carga crítica uniformemente distribuída, que levou em conta a teoria da estabilidade elástica de TIMOSHENKO e GERE (1961) e os trabalhos de MULLER (1962) e CONSOLAZIO e HAMILTON (2007), além do cálculo da armadura necessária na mesa comprimida para se impedir a ocorrência da instabilidade lateral destas vigas. Verificou-se que a instabilidade lateral de vigas pré-moldadas em concreto protendido depende das dimensões da seção transversal e do vão total, e das rigidezes à flexão transversal e à torção destas vigas; e que o método usual aproximado para a determinação da tensão normal máxima de compressão e da armadura necessária na mesa superior da viga pode ser utilizado.

Palavras-chave

Instabilidade lateral; vigas pré-moldadas; concreto protendido.

Introdução

O concreto de alta resistência permite que as vigas pré-moldadas protendidas apresentem maior vão e seção transversal mais esbelta. Por conta disto, a segurança à instabilidade lateral destas vigas torna-se muito relevante no projeto e deve ser assegurada nas etapas de manuseio, transporte e instalação em tabuleiros de pontes.

Alguns dos parâmetros influentes na verificação da instabilidade lateral em vigas pré-moldadas protendidas são suas dimensões da seção transversal e seu comprimento de vão. Imperfeições geométricas podem surgir no processo de fabricação e reduzem a segurança à instabilidade lateral destas vigas.

CONSOLAZIO e HAMILTON (2007) citaram que, após a colocação de uma viga sobre os aparelhos de apoio de uma travessa de apoio, parâmetros adicionais podem contribuir para reduzir a sua segurança à instabilidade lateral. O ângulo entre o eixo do aparelho de apoio da viga e o eixo perpendicular à direção da rodovia leva a distribuições de pressão desiguais sobre os aparelhos de apoio, o que pode diminuir a capacidade resistente à instabilidade lateral. Além disto, a rigidez de contraventamento e a possibilidade de deformação do material do aparelho de apoio são outros parâmetros que podem reduzir a segurança à instabilidade lateral de vigas pré-moldadas protendidas.

De forma simplista, a norma ABNT NBR 6118 (2023) apresenta um procedimento aproximado para verificação da segurança à instabilidade lateral de vigas de concreto armado ou protendido no item 15.10. Neste procedimento, a largura da mesa de concreto comprimido deve ser maior que um cinquenta avos (1/50) do valor do comprimento do flange comprimido e 40% da altura da viga.

Neste trabalho, são apresentados critérios sobre a instabilidade lateral de vigas pré-moldadas em concreto protendido e mostradas formulações de TIMOSHENKO e GERE (1961), MULLER (1962) e CONSOLAZIO e HAMILTON (2007) para o cálculo da carga crítica uniformemente distribuída que leva à instabilidade (flambagem) lateral destas vigas. Além disto, é exemplificado o cálculo da armadura necessária na mesa comprimida para se impedir a ocorrência de tal instabilidade.

Revisão Bibliográfica

Ao se submeter uma viga esbelta a um carregamento vertical crescente (uniforme ou concentrado), pode ocorrer uma instabilidade lateral (flambagem lateral) e resultar na ruptura desta viga, conforme se vê na Figura 1. Tal fenômeno pode acontecer mesmo quando não são aplicadas cargas laterais ou diretas.

Para que isso venha a ocorrer, há um valor crítico desse carregamento, que pode ser muito menor do que aquele que acarreta ruptura por flexão ou ao cisalhamento de uma viga esbelta, o qual aumenta rapidamente e repentinamente deslocamentos e rotações perto do centro da viga.

Figura 1 – Vista de viga com instabilidade lateral durante levantamento (GERMÁN, 2015).

TIMOSHENKO e GERE (1961) criaram, com base em equações diferenciais de equilíbrio e condições de apoios, a Equação 1 referente ao cálculo da carga crítica de flambagem lateral para vigas de seção "I" simplesmente apoiadas que suportam carga vertical uniformemente distribuída p.

$$p_{cr} = \frac{\gamma_4 \cdot \sqrt{E \cdot I_y \cdot C}}{L^3} \tag{1}$$

onde γ_4 é um coeficiente numérico dependente da razão $(L^2 \cdot C)/C_1$ e da posição da carga sobre a viga, conforme Tabela 1; $C_1 = E \cdot C_w$ é a rigidez ao empenamento; $E \cdot I_y$ é a rigidez à flexão transversal; C = G.J é a rigidez à torção; e *L* é o comprimento de vão da viga.

Tabela 1 – Valores do coeficiente γ_4 .								
Carga	$(L^2 \cdot C)/C_1$							
aplicada no	0,4	4	8	16	24	32	48	
Bordo superior	92,9	36,3	30,4	27,5	26,6	26,1	25,9	
Centroide	143,0	53,0	42,6	36,3	33,8	32,6	31,5	
Bordo inferior	223,0	77,4	59,6	48,0	43,6	40,5	37,8	
Carga	$(L^2 \cdot C)/C_1$							
aplicada no	64	80	128	200	280	360	400	
Bordo superior	25,9	25,8	26,0	26,4	26,5	26,6	26,7	
Centroide	30,5	30,1	29,4	29,0	28,8	28,6	28,6	
Bordo inferior	36,4	35,1	33,3	32,1	31,3	31,0	30,7	

Em se tratando de viga com seção transversal "I", conforme ilustrada na Figura 2, os valores do centro de cisalhamento e de rigidez à flexão transversal, de rigidez à torção e de rigidez ao empenamento são dados pelas Equações 2 a 5.

Figura 2 – Propriedades de uma seção "I".

$$e = \frac{t_1 \cdot b_1^3 \cdot h}{t_1 \cdot b_1^3 + t_2 \cdot b_2^3}$$
(2)

$$E \cdot I_{y} = E \cdot \left[\frac{t_{1} \cdot b_{1}^{3}}{12} + \frac{t_{2} \cdot b_{2}^{3}}{12} + \frac{\left(h - \frac{t_{1}}{2} - \frac{t_{2}}{2}\right) \cdot t_{w}^{3}}{12} \right]$$
(3)

$$G \cdot J = G \cdot \left[\frac{t_1^3 \cdot b_1 + t_2^3 \cdot b_2 + t_w^3 \cdot \left(h - \frac{t_1}{2} - \frac{t_2}{2}\right)}{3} \right]$$
(4)

$$E \cdot C_{w} = E \cdot \left[\frac{h^{2} \cdot t_{1} \cdot t_{2} \cdot b_{1}^{3} \cdot b_{2}^{3}}{12 \cdot (t_{1} \cdot b_{1}^{3} + t_{2} \cdot b_{2}^{3})} \right]$$
(5)

MULLER (1962) citou que o estudo do problema da instabilidade lateral em vigas pré-moldadas protendidas de grande vão é de primordial importância, uma vez que tais elementos estruturais são geralmente esbeltos, com o objetivo de manter mínimo o seu peso. Em seu trabalho, apresentou um método para calcular a carga vertical crítica uniformemente distribuída p_{cr} de flambagem lateral para vigas esbeltas simétricas com diferentes condições das suas seções de apoio, cujo valor é dado pela Equação 6.

$$p_{cr} = \frac{m\sqrt{E \cdot I_y \cdot G \cdot J}}{L^3} \tag{6}$$

onde m é um coeficiente variável dependente das condições da seção de extremidade relativas à flexão vertical, à flexão lateral e à torção, conforme Tabela 2.

LASZIO e IMPER (1987) estudaram a instabilidade lateral nas etapas de manuseio e transporte de vigas longas em concreto protendido, tendo sido dada especial atenção à localização dos pontos de levantamento, apoios no transporte, efeito das condições da estrada (impacto) e superelevação, e apresentaram etapas para avaliar a instabilidade lateral durante o manuseio e transporte destas vigas.

Tabela 2 –	Valores d	o coeficiente	m.
------------	-----------	---------------	----

Condições da	Valor de		
para flexão vertical	para flexão lateral	para torção	m
simplesmente apoiada	rotulada	engaste	28,3
em balanço	rotulada engaste		12,8
engaste em ambas extremidades	rotulada	engaste	98,0
engaste e apoio	rotulada	engaste	54,0
simplesmente apoiada	engaste	engaste	50,0
engaste	engaste	engaste	137,0

MAST (1989) desenvolveu um método simples para análise da instabilidade lateral de vigas suspensas por cabos, que permite a avaliação dos efeitos de imperfeições, e sugeriu ações para melhorar a estabilidade lateral destas, tais como mover os pontos de elevação para dentro, elevar o eixo de rotação, e aumentar o módulo de elasticidade do concreto.

MAST (1993) apresentou uma teoria para avaliar a instabilidade lateral de vigas de seção "I" em concreto protendido, que incluiu a consideração do comportamento pós-fissuração de vigas de concreto protendido sob laterais cargas, e comparou os resultados do ensaio de vigas de seção "I" em concreto protendido de 45,4 m de comprimento, publicados em MAST (1994), com os previstos pela sua teoria.

STRATFORD e BURGOYNE (1999) afirmaram que, caso uma viga esteja posicionada na estrutura, é improvável que ocorra ruptura por instabilidade lateral, mas durante o seu levantamento, a viga é menos estável, pois não há restrição contra rotação. O comportamento de vigas de concreto pré-fabricado pode ser suscetível à flambagem lateral sob ação do seu peso próprio antes que estas estejam apoiadas em uma estrutura.

CONSOLAZIO e HAMILTON (2007) propuseram a Equação 7 para avaliar a carga crítica uniformemente distribuída de flambagem lateral para vigas longas de seção "I" em concreto protendido, que foi determinada a partir de análise numérica e ensaios de laboratório, levando em consideração as propriedades geométricas da seção transversal e o vão da viga, o ângulo de inclinação da ponte, o ângulo entre o eixo do apoio da viga e o eixo perpendicular à direção da rodovia, a rigidez de contraventamento e alguns fatores de campo, tais como imperfeições de construção e fluência do material de neoprene fretado que compõe o aparelho de apoio.

$$p_{cr} = \frac{24 \cdot \sqrt{E \cdot I_y \cdot C}}{L^3} \cdot (1 - 0,0017 \cdot L) \cdot (1 - 0,006 \cdot \theta)$$
(7)

onde $E \cdot I_y$ e C são dados em kipft², L é dado em ft e θ é o ângulo entre o eixo do apoio da viga e o eixo perpendicular à direção da rodovia (v. Figura 3), dado em graus.

Figura 3 – Ângulo θ definido por CONSOLAZIO e HAMILTON (2007).

O método usual aproximado para a determinação da tensão normal de compressão máxima de cálculo e da armadura necessária na mesa superior comprimida de vigas pré-moldadas protendidas consiste na consideração que esta mesa se comporte como um pilar comprimido (TIMOSHENKO, 1932).

A tensão normal de compressão máxima de cálculo na mesa superior comprimida de vigas pré-moldadas protendidas pode ser estimada por meio da Equação 8.

$$\sigma_{cd} = \frac{N_d}{b_1 \cdot t_1} \tag{8}$$

onde N_d é a força normal de compressão máxima de cálculo obtida com o uso da Equação 9.

$$N_d = \frac{\gamma_f \cdot M_g}{z} \tag{9}$$

onde γ_f é o coeficiente de ponderação das ações, igual a 1,4, M_g é o momento fletor no meio do vão da viga devido à carga de peso próprio equivalente, dado pela Equação 10, e z é o braço de alavanca da viga, aproximadamente igual a 81% da altura total da viga.

$$M_g = \frac{\beta_a \cdot g_{pp} \cdot L^2}{8} \tag{10}$$

onde β_a é o coeficiente mínimo de amplificação dinâmica (impacto), conforme norma ABNT NBR 9062 (2017), igual a 1,3, e g_{pp} é a carga de peso próprio da viga.

O índice de esbeltez λ da mesa superior comprimida de vigas pré-moldadas protendidas, admitida se comportando como pilar comprimido fosse, é dado pela Equação 11.

$$\lambda = \frac{\sqrt{12} \cdot L}{b_1} \tag{11}$$

Segundo a norma ABNT NBR 6118 (2023), o método do pilar-padrão com curvatura aproximada pode ser empregado apenas em pilares com seção constante, armadura simétrica e constante ao longo do seu eixo, e índice de esbeltez λ não maior que 90.

Considerando-se que a distribuição de tensões de cisalhamento na mesa superior comprimida seja triangular, o momento fletor de segunda ordem M_{2d} no plano da mesa comprimida pode ser avaliado segundo a Equação 12.

$$M_{2d} = N_d \cdot \left\{ 0.2 \cdot \left(\frac{L}{2}\right)^2 \cdot \left[\frac{0.005}{b_1 \cdot (\nu + 0.5)}\right] \right\}$$
(12)

onde ν é a força normal adimensional não menor que 0,5, dada por $N_d/(b_1 \cdot t_1 \cdot f_{cd})$, sendo f_{cd} a resistência do concreto à compressão de cálculo.

A partir do ábaco da Figura 4, pode-se obter a área de aço total a ser distribuída nas extremidades da mesa superior comprimida de vigas pré-moldadas protendidas.

Em se conhecendo os valores da força normal adimensional ν , definida na Equação 12, e do momento fletor adimensional μ , dado pela Equação 13, obtém-se a taxa mecânica da armadura de aço total ω_{tot} (v. Equação 14), que é função direta da área de aço total $A_{s,tot}$.

$$\mu = \frac{M_{2d}}{b_1^2 \cdot t_1 \cdot f_{cd}}$$
(13)

$$\omega_{tot} = \frac{A_{s,tot}}{b_1 \cdot t_1} \cdot \frac{f_{yd}}{f_{cd}}$$
(14)

onde f_{yd} é a resistência do aço ao escoamento de cálculo.

Figura 4 – Ábaco para seção em concreto com armadura simetricamente distribuída (CEB, 1982).

Exemplo de Aplicação

A Figura 5 mostra a seção transversal, com cotas em cm, de uma viga em concreto protendido simplesmente apoiada com 40 m de vão entre apoios. O valor adotado para o módulo de elasticidade longitudinal do concreto é igual a 25 GPa, enquanto para o módulo de elasticidade transversal, 10 GPa.

Figura 5 – Seção transversal "I" de uma viga de 40 m de comprimento (cotas em cm).

As dimensões da seção transversal da Figura 5 foram adotadas com base nas recomendações contidas no estudo de THOMAZ e CARNEIRO (2010). A altura da seção transversal da viga h_{total} foi obtida por meio da Equação 15, enquanto as larguras da mesa, da alma e do talão inferior, com o uso das Equações 16 a 18.

$$h_{total} = 0,00025 \cdot L^2 + 0,02065 \cdot L + 0,75434 \tag{15}$$

onde L é o comprimento de vão da viga em metros.

$$b_1 \ge (L/100) \cdot h_{total} \ e \ b_1 \ge (L/30)$$
 (16)

onde L e h_{total} são dados em metros.

$$t_w \ge 19 \, cm \tag{17}$$

$$b_2 = 3 \cdot t_w \tag{18}$$

Por meio da Equação 2 e com o uso dos valores das cotas da Figura 5, o valor da cota do centro de cisalhamento da seção transversal da viga é igual a 1,295 m. Além disto, os valores de rigidez à flexão transversal, de rigidez à torção e de rigidez ao empenamento, dados pelas Equações 3 a 5, são iguais a $E \cdot I_y$ = 717.578,13 kNm², $G \cdot J = 172.500,00$ kNm² e $E \cdot C_w = 407.980,96$ kNm⁴.

O valor da razão $(L^2 \cdot C)/C_1$ é igual a 40² m²×172.500,00 kNm²/407.980,96 kNm⁴ = 677. A partir da Tabela 1, considerando carga aplicada no centroide da seção transversal "I" e o valor limite da razão $(L^2 \cdot C)/C_1 = 400$, o valor γ_4 é igual a 28,6.

Assim, o valor da carga crítica uniformemente distribuída ao longo do vão da viga, conforme TIMOSHENKO e GERE (1961), é igual a $p_{cr} = [28,6 \times (717.578,13 \text{ kNm}^2 \times 172.500,00 \text{ kNm}^2)^{0.5}]/40^3 \text{ m}^3 = 157,22 \text{ kN/m}.$

Sabendo-se que a área da seção transversal da viga e o peso específico do concreto protendido são iguais a $A = 0,675 \text{ m}^2 \text{ e } \gamma_{CP} = 25 \text{ kN/m}^3$, o peso próprio linear da viga é $g_{pp} = A \cdot \gamma_{CP} = 0,675 \text{ m}^2 \times 25 \text{ kN/m}^3 = 16,88 \text{ kN/m}$. Portanto, o fator de segurança à instabilidade lateral é igual a $F.S. = p_{cr}/g_{pp} = 157,22 \text{ kN/m} / 16,88 \text{ kN/m} = 9,31$, que é maior que o valor recomendado igual a 3,00, segundo CONSOLAZIO e HAMILTON (2007).

Segundo MULLER (1962), por meio da Equação 6, o valor da carga crítica uniformemente distribuída ao longo do vão da viga é igual a $p_{cr} = [28,3 \times (717.578,13 \text{ kNm}^2 \times 172.500,00 \text{ kNm}^2)^{0.5}]/40^3 \text{ m}^3 = 155,57 \text{ kN/m}$, que é cerca de apenas 1% menor que o proposto por TIMOSHENKO e GERE (1961).

Conforme CONSOLAZIO e HAMILTON (2007), com o uso da Equação 7 e adotando o valor nulo para θ , o valor da carga crítica uniformemente distribuída ao longo do vão da viga é igual a $p_{cr} = [24 \times (1.736.791,88 \text{ kipft}^2 \times 417.510,78 \text{ kipft}^2)^{0.5}]/131,2^3 \text{ ft}^3.(1 - 0,0017 \times 131,2 \text{ ft}).(1 - 0,006.0^\circ) = 9,05 \text{ kip/ft} = 132,04 \text{ kN/m}$, que é aproximadamente 16% menor que o proposto por TIMOSHENKO e GERE (1961).

O momento fletor no meio do vão da viga devido à carga de peso próprio equivalente, dado pela Equação 10, é igual a $M_g = (1,3 \times 16,88 \text{ kN/m} \times 40^2 \text{ m}^2)/8 = 4388,8 \text{ kNm}$. Com isto, a força normal de compressão máxima de cálculo, obtida com o uso da Equação 9, é igual a $N_d = 1,4 \times 4388,8 \text{ kNm}/(0,81 \times 2 \text{ m}) = 3792,8 \text{ kN}$. Portanto, a tensão normal de compressão máxima de cálculo na mesa superior comprimida da viga (v. Equação 8) é igual a $\sigma_{cd} = 3792,8 \text{ kN}/(1,3 \text{ m} \times 0,10 \text{ m}) = 29.175,4 \text{ kN/m}^2 = 29,2 \text{ MPa}$. Considerando $f_{ck} = 45 \text{ MPa}, \sigma_{cd}/f_{cd} = 29,2 \text{ MPa}/(45 \text{ MPa}/1,4) = 0,91$.

O índice de esbeltez da mesa superior comprimida da viga, dado pela Equação 11, é igual a $\lambda = 12^{0.5} \times 40$ m / 1,3 m = 106,6, que é cerca de 18% superior a 90.

A força normal adimensional é igual a $\nu = -3792,8 \text{ kN} / (1,3 \text{ m} \times 0,1 \text{ m} \times 45.000 \text{ kN/m}^2/1,4) = -0,91$. Por conta disto, o momento fletor de segunda ordem no plano da mesa comprimida, segundo a Equação 12, é igual a $M_{2d} = 3792,8 \text{ kN} \times \{0,2 \times 20^2 \text{ m}^2 \times [0,005/(1,3 \text{ m} \times (0,91 + 0,5))]\} = 3792,8 \text{ kN} \times 0,218 \text{ m} = 826,7 \text{ kNm}.$

Sendo a força normal adimensional ν igual a - 0,91 e o momento fletor adimensional (v. Equação 13) igual a $\mu = 826,7 \text{ kNm}/(1,3^2 \text{ m}^2 \times 0,1 \text{ m} \times 45.000 \text{ kN/m}^2/1,4) = 0,15$, obtém-se da Figura 4 a taxa mecânica da armadura de aço total ω_{tot} igual 0,41. Por conseguinte, área de aço total (v. Equação 14) do tipo CA-50 é igual a $A_{s,tot} = (0,41 \times 1,3 \text{ m} \times 0,1 \text{ m} \times 45.000 \text{ kN/m}^2/1,4)/(500.000 \text{ kN/m}^2/1,15) = 0,00394 \text{ m}^2 = 39,4 \text{ cm}^2$, o que equivale a aproximadamente 20 barras de 16 mm de diâmetro. A Figura 6 mostra o esboço da armadura necessária para evitar flambagem lateral na mesa superior comprimida para viga em estudo.

Figura 6 – Esboço da armadura contra flambagem lateral da viga.

Conclusões

Para um vão de 40 m de comprimento, com o uso das recomendações de THOMAZ e CARNEIRO (2010), foi adotada uma seção "I" para uma viga pré-moldada protendida, cujas dimensões estão na Figura 5. Ressalta-se que, com o uso da norma ABNT NBR 6118 (2023), a largura da mesa comprimida deveria ser igual a 80 cm.

Nas formulações de TIMOSHENKO e GERE (1961), MULLER (1962) e CONSOLAZIO e HAMILTON (2007) para o cálculo da carga crítica uniformemente distribuída que leva à instabilidade (flambagem) lateral de vigas pré-moldadas protendidas, os parâmetros comuns são o comprimento do vão e as rigidezes à flexão transversal e à torção.

Em relação ao valor da carga crítica obtido por TIMOSHENKO e GERE (1961), os valores desta carga encontrados a partir de MULLER (1962) e CONSOLAZIO e HAMILTON (2007) foram 1% e 16% menores, nesta ordem.

Exemplificou-se didaticamente o cálculo da armadura necessária na mesa comprimida de uma viga prémoldada protendida para se impedir a ocorrência de sua instabilidade lateral, onde neste considerou-se que a mesa comprimida se comporta como um pilar comprimido.

Referências

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 6118 Projeto de Estruturas de Concreto. 2023.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 9062 Projeto e Execução de Estruturas de Concreto Pré-moldado. 2017.
- COMITÉ EURO-INTERNATIONAL DU BÉTON CEB Bulletin D'Information N. 141 CEB/FIP Manual on Bending and Compression. Construction Press. 1982.
- CONSOLAZIO, G.R.; HAMILTON, H.R. Lateral Bracing of Long-Span Florida Bulb-Tee Girders. Final Report N. BD-545 RPWO-36, University of Florida, July, 2007.
- GERMÁN, V.H. Lateral Stability Analysis of Long Precast Prestressed Concrete Beams. Master's Thesis, Escola de Camins, February, 2015.
- LASZIO, G.; IMPER, R.R. Handling and Shipping of Long Span Bridge Beams. PCI Journal, November-December, p. 86-101, 1987.
- MAST, R.F. Lateral Stability of Long Prestressed Concrete Beams Part 1. PCI Journal, January-February, p. 34-53, 1989.
- MAST, R.F. Lateral Stability of Long Prestressed Concrete Beams Part 2. PCI Journal, January-February, p. 70-88, 1993.
- MAST, R.F. Lateral Bending Test to Destruction of a 149 ft Prestressed Concrete I-Beam. PCI Journal, July-August, p. 54-62, 1994.
- MULLER, J. Lateral Stability of Precast Members During Handling and Placing. PCI Journal, February, p. 20-31, 1962.
- STRATFORD, T.J.; BURGOYNE, C.J. Lateral Stability of Long Precast Concrete Beams. Structures and Buildings, Vol. 134, N. 2, p. 169-180, 1999.
- TIMOSHENKO, S.P. Stability of Plate Girders Subjected to Bending. IABSE Congress Report, 1932.
- TIMOSHENKO, S.P.; GERE, J.M. Theory of Elastic Stability. McGraw Hill International Book Company. 1961.
- THOMAZ, E.C.S.; CARNEIRO, L.A.V. Pontes Rodoviárias com Vigas Pré-moldadas de Concreto Protendido: Sugestões sobre Dimensões e Construção. *In*: Anais do III Congresso Brasileiro de Pontes e Estruturas, Rio de Janeiro, Brasil, 2010.